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1. Introduction

Substructure synthesis has often been plagued by the apparent constraints imposed on the
choice of shape functions. Not only do most investigators choose to carry out a preliminary
modal analysis of each substructure in order to pick the ‘‘best’’ shape functions (a.k.a.
‘‘component modes’’), but very often the requirement of satisfying external geometric boundary
conditions is imposed on these shape functions from the outset, and this restricts the choice or at
the very least makes it problem-dependent. This paper intends to show that a much greater
flexibility is in fact allowed: admissibility of underlying global shape functions (as required by the
variational principle when a direction to the approximation on the eigenvalues is required) can be
imposed at any stage of the process, and simply amounts to a series of constraints on the system
variables, following from compliance with both the external and internal geometric boundary
conditions (the latter often going under the name ‘‘geometric compatibility’’).

2. System equations

The study centres on free vibration of an undamped structure, described by the following self-
adjoint differential eigenvalue form (following separation of time and space variables, and
restricted in this case to a one-dimensional domain for the sake of simplicity, although extension
to two- and three-dimensional systems is immediate) [1]:

LwðxÞ ¼ lmðxÞwðxÞ; 0oxoL; ð1Þ

ARTICLE IN PRESS

*Tel.: +32-10-472500; fax: +32-10-472501.

E-mail address: johnson@prm.ucl.ac.be (D.A. Johnson).

0022-460X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00213-X



where L is a linear and homogeneous self-adjoint differential operator of even order 2p, wðxÞ is
the displacement at position x of the structure (overall length L), l is a parameter and mðxÞ is the
mass density at x:
The displacement is subject to 2p boundary conditions:

BiwðxÞ ¼ 0; i ¼ 1;y; p; x ¼ 0;L; ð2Þ

where Bi are linear and homogeneous differential operators of maximum order 2p�1.

3. Variational approach

When writing the variational equivalent to the differential eigenvalue problem of order 2p, the
Rayleigh’s quotient is defined as

RðcðxÞÞ ¼

R L

0 cLc dxR L

0 mc2 dx

in which c is a trial function which must belong to the set of comparison functions, and must
therefore

* satisfy all boundary conditions;
* be 2p times differentiable, i.e., be of class C2p�1 (continuous derivatives up to order

2p�1).

In order to broaden the class of test functions, the numerator of this quotient is integrated by
parts, while simultaneously expressing natural boundary conditions (BC): this results in replacing
high-order derivatives by derivatives of maximum order p�1, and the final form of the numerator,
defined as the energy inner product [c;c], reads as

½c;c� ¼
Z L

0

Xp

k¼0

ak
dkc
dxk

 !2

dx þ
Xp�1

m¼0

bm
dmc
dxm

� �2 L

0

����� ð3Þ

for self-adjoint systems. This expression is quadratic and can be interpreted as twice the
maximum potential energy of the system corresponding to the function c: The ak

and bm coefficients are constants or space functions resulting from the expressed boundary
conditions.
As can be deduced from Eq. (3), this expression of [c;c] will provide the correct value of the

potential energy for any function c which:

* satisfies the geometric boundary conditions, viz. those involving derivatives up to the order
p � 1;

* is p times differentiable, i.e., of class Cp�1:

It should be stressed at this point that the latter requirement holds over the entire structure
under consideration. This means that c must exhibit continuous derivatives up to order p�1 over
the whole structure.
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When applying a Ritz procedure, c is expressed in terms of a limited size subspace spanned by
independent shape functions c1; y, cn:

c ¼
Xn

i¼1

cici; ð4Þ

the ci coefficients becoming the variables of the problem, and [c;c] being expressed as

½c;c� ¼
Xn

i¼1

Xn

j¼1

kijcicj; ð5Þ

where from Eq. (3):

kij ¼ ½ci;cj� ¼
Z L

0

Xp

k¼0

ak
dkci

dxk

dkcj

dxk
dx þ

Xp�1

m¼0

bm
dmci

dxm

dmcj

dxm

�����
L

0

; ð6Þ

leading to a ‘‘stiffness’’ matrix K ¼ ½kij�:
Eq. (6) shows that the ci functions must be admissible, i.e., satisfy the conditions stated above,

and, in particular, be of class Cp�1 over the entire structure, while also remaining independent.

4. Substructure synthesis

In substructure synthesis, shape functions are chosen for each separate substructure and the
core of the technique, mainly as regards precision and hence convergence, lies in the choice of these
shape functions (also inappropriately named component ‘‘modes’’, although they generally are
not the solutions to any realistic eigenvalue problem!).
This has always been considered a critical phase of the procedure, and has led to much soul-

searching and investigation (Refs. [1–7]). The choice is made either a priori (‘‘assumed modes’’ or
‘‘Rayleigh–Ritz’’ approach), or following a detailed modal analysis (e.g., finite element) of the
component resulting in a selection of the more pertinent modes for future use. In fact, as shown
further on, requirements on these local shape functions will depend on how and when they are
integrated into the procedure, and this is the key point the paper wishes to make.
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Fig. 1. Shape functions of a substructure.
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It should be noted that, as these functions are defined only on a given substructure SSj; they will
generally exhibit some measure of discontinuity when considered over the entire structure. If one
defines (see Fig. 1):

cðjÞ
i as the ith shape function chosen on substructure SSj

cðjÞ ¼
X

i

cijc
ðjÞ
i as the local expansion on SSj

then

cðjÞ
i ;cðjÞ a0 on SSj;

¼ 0 elsewhere;

(

c � cðjÞ on SSj

Even if compliance with external geometric boundary conditions is ensured (whether at the
outset, or via later enforcement—see further on), these local shape functions will therefore
generally not qualify as global admissible functions, which must be Cp�1 over the entire structure.
Local admissibility is not really useful as such; however, it goes part of the way towards global
admissibility as will be seen.
This same issue is relevant in finite element modelling (FEM), where local and global shape

functions are defined—this is not surprising as the FEM is a rather particular case of the
Rayleigh–Ritz technique.
Global admissibility will be enforced via:

* compliance of c ¼
P

i

P
j cijc

ðjÞ
i with the external boundary conditions;

* an overall Cp�1 condition on c:

Local admissibility will ensure Cp�1 continuity of c � cðjÞ within any SSj; but enforcement of
this same condition at the interfaces between substructures (‘‘internal’’ boundaries) will result in a
series of constraints on the cij coefficients, which amount to defining a new set of independent
shape functions fi; which are

* defined over the entire structure,
* Cp�1 over the entire structure,

as will be apparent in the simple examples detailed below.
This enforcement is generally (e.g., Refs. [4,5,7]) not considered in this light, but carried out

under the heading of ‘‘geometric compatibility’’ (continuity of position (p ¼ 1) or of slope and
position (p ¼ 2) depending on p) without any formal justification other than intuition.

5. Re-examination of global admissibility

The contention of this paper is that ‘‘geometric compatibility’’ is in fact a necessary requirement
to ensure admissibility of the global shape functions. Physical continuity of shear force and
bending moment at the interfaces could also be envisaged (and would lead to defining
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independent comparison functions, i.e., of class C2p�1; if all the external boundary conditions are
also satisfied) but is more complicated to implement and is not required in order to satisfy the
underlying variational principle; moreover, the results will not necessarily be better, since
satisfaction of the internal and external boundary conditions is not the only issue: what is required
is an overall satisfaction of the differential equations of motion, and some choices of overall shape
functions are better than others in that respect, as demonstrated by Meirovitch and Kwak [6].
Compliance with external boundary conditions can also be enforced at the same stage (if the

prior choice of local shape functions was such that this was not already ensured) and simply leads
to additional constraints on the cij: This shows that there is no formal reason to treat internal and
external boundary conditions differently or at different stages, as has often been the case (prior
enforcement of external BC and later enforcement of internal BC via ‘‘compatibility’’): both are
necessary in the long run and can be enforced at any stage.
The global admissible shape functions fi never appear as such in the procedure, but are

nonetheless mathematically prevalent, via the constraints. This again is exactly the same as in the
FEM, where the overlapping in the assembled M and K matrices amounts to considering global
admissible shape functions, and the compliance with external BC is achieved, at the same
assembly stage, by dropping bordering lines and columns. Once again, substructuring and
hierarchical FEM are simply different names for very similar techniques.

6. Some simple examples

The following simple examples will show how the global admissible functions result from the
above considerations.
Consider first a Rayleigh–Ritz expansion for a single-structure problem (Fig. 2a) with external

BC:

wð0Þ ¼ 0 ð7Þ

and using three shape functions which do not meet this requirement separately, i.e.,

c ¼ c1c1 þ c2c2 þ c3c3; ð8Þ

where c1ð0Þa0; c2ð0Þa0; c3ð0Þa0:
At some stage in the procedure, the external BC need to be enforced, and this results in the

following linear constraint equation:

c1c1ð0Þ þ c2c2ð0Þ þ c3c3ð0Þ � 0; ð9Þ

which is an identity, allowing to express one of the variables ci; say c1; as

c1 ¼ �c2
c2ð0Þ
c1ð0Þ

� c3
c3ð0Þ
c1ð0Þ

; ð10Þ

whence

c ¼ c2 c2 �
c2ð0Þ
c1ð0Þ

c1

� �
þ c3 c3 �

c3ð0Þ
c1ð0Þ

c1

� �
¼ c2f2 þ c3f3 ð11Þ
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and both fi functions, which are in fact the independent functions respectively related to c2 and
c3; are such that

f2ð0Þ ¼ f3ð0Þ ¼ 0 ð12Þ

as can easily be ascertained and appears in Fig. 2b.
In a similar manner, compliance with internal BC between substructures will ensure that the

remaining base functions (after co-ordinate reduction) are p times differentiable, which is also one
of the admissibility requirements. To show this, consider two substructures SS1 and SS2 in a one-
dimensional problem of differential order 2 (Fig. 3a). The geometric compatibility conditions at
the interface point will require continuity of c; the latter being expanded via

cð1ÞðxÞ ¼ c11c
ð1Þ
1 ðxÞ þ c21c

ð1Þ
2 ðxÞ on SS1 ð0oxoLÞ;

cð2ÞðyÞ ¼ c12c
ð2Þ
1 ðyÞ þ c22c

ð2Þ
2 ðyÞ on SS2 ð0oyoL0Þ;

x ¼ 0 SS1 x ¼ L

cð1Þ
1 ðxÞ and cð1Þ

2 ðxÞa0

¼ 0 elsewhere

�������
�������
y ¼ 0 SS2 y ¼ L0

cð2Þ
1 ðyÞ andcð2Þ

2 ðyÞa0

¼ 0 elsewhere

�������
(i.e., all cðjÞ

i discontinuous when considered over the entire structure).
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Fig. 2. (a) Single structure—non-admissible shape functions. (b) Single structure—resulting admissible shape functions.
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Geometric compatibility at the interface (x ¼ L; y ¼ 0) amounts to cð1ÞðLÞ ¼ cð2Þð0Þ; i.e.,

c11c
ð1Þ
1 ðLÞ þ c21c

ð1Þ
2 ðLÞ � c12c

ð2Þ
1 ð0Þ þ c22c

ð2Þ
2 ð0Þ; ð13Þ

whence

c11 ¼
c12c

ð2Þ
1 ð0Þ þ c22c

ð2Þ
2 ð0Þ � c21c

ð1Þ
2 ðLÞ

cð1Þ
1 ðLÞ

ð14Þ

and

c ¼ c21 cð1Þ
2 ðxÞ �

cð1Þ
2 ðLÞ

cð1Þ
1 ðLÞ

cð1Þ
1 ðxÞ

 !

þ c12 cð2Þ
1 ðyÞ þ

cð2Þ
1 ð0Þ

cð1Þ
1 ðLÞ

cð1Þ
1 ðxÞ

 !

þ c22 cð2Þ
2 ðyÞ þ

cð2Þ
2 ð0Þ

cð1Þ
1 ðLÞ

cð1Þ
1 ðxÞ

 !

¼ c21f1 þ c12f2 þ c22f3: ð15Þ

The resulting base functions fi are p times differentiable (in this case p ¼ 1), as can readily be
checked and appears in Fig. 3b.
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Fig. 3. (a) Two substructures—discontinuous shape functions. (b) Two substructures—resulting global admissible

shape functions (p ¼ 1).
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7. Flexible choice of base functions

The above observations leave the user free to choose an initial set of base functions which are
the most amenable to analytic manipulation and, moreover, an invariable set in such a way as to
render the setting up of the K and M matrices totally systematic, i.e., problem-independent.
In the author’s own experience (Refs. [8–12]), power series have most of the required

advantages, as they are

* a user-independent and problem-independent choice;
* easy to implement and expand to a larger set;
* capable of satisfying any boundary condition, whether external or internal.

They fit the definition of quasi-comparison functions as coined by Meirovitch and Kwak [6],
since they result from an a priori choice and do not constitute a ‘‘family’’ or ‘‘set’’ as defined in
Refs. [6,7], viz., resulting from the exact solution to a simplified problem (generally as regards
physical BC) and less flexible as regards their actual fit to the true behaviour of the system.

8. Conclusion

The author hopes to have demonstrated that the oft-used notion of geometric compatibility in
modal synthesis is in fact equivalent to generating underlying admissible shape functions, which
consequently exhibit this admissibility throughout the entire structure.
These global admissible functions never appear as such in the process, yet are present via the

geometric constraints imposed on the system variables.
The fact that admissibility constraints, whether relating to external or internal boundaries, can

thus be imposed at any stage of the process, makes the initial choice of base functions much more
flexible and problem-independent, and therefore more amenable to automatic and symbolic
computation. This has been amply demonstrated in the various references.
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